Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 52.382
1.
BMC Public Health ; 24(1): 1275, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724960

OBJECTIVE: This study aimed to evaluate the cost-utility of the addition of vericiguat for treating chronic heart failure (CHF) in China from the healthcare payer's perspective. METHODS: A Markov model was built to estimate the cost and utility of treating CHF using vericiguat plus standard treatment (vericiguat group) vs. standard treatment alone (standard treatment group). The clinical parameters (mortality of cardiovascular and hospitalization rate of HF) were calculated according to the VICTORIA clinical trial. The HF cost and utility data were obtained from the literature published in China. One-way sensitivity analysis and probability sensitivity analysis were performed. RESULTS: According to the 13-year model, vericiguat was more expensive (155599.07 CNY vs. 259396.83 CNY) and more effective (4.41 QALYs vs. 4.54 QALYs). The incremental cost-utility ratio (ICUR) was 802389.27 CNY per QALY. One-way sensitivity analysis revealed that cardiovascular mortality in the two groups was the parameter that had the greatest impact on the results. The GDP per capita in 2022 in China was 85,700 CNY. The probability sensitivity analysis (PSA) showed that the probability of vericiguat being cost-effective was only 41.7% at the willingness-to-pay (WTP) threshold of 3 times GDP per capita (257,100 CNY). CONCLUSIONS: In China, the treatment of CHF with vericiguat is not cost-effective. The drug price could decrease to 145.8 CNY, which could be considered cost-effective.


Cost-Benefit Analysis , Heart Failure , Markov Chains , Pyrimidines , Stroke Volume , Humans , Heart Failure/drug therapy , Heart Failure/mortality , Heart Failure/economics , China , Pyrimidines/therapeutic use , Pyrimidines/economics , Chronic Disease/drug therapy , Drug Therapy, Combination , Quality-Adjusted Life Years , Male , Female , Heterocyclic Compounds, 2-Ring
2.
Cells ; 13(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38727296

Derangement of the epidermal barrier lipids and dysregulated immune responses are key pathogenic features of atopic dermatitis (AD). The Th2-type cytokines interleukin IL-4 and IL-13 play a prominent role in AD by activating the Janus Kinase/Signal Transduction and Activator of Transcription (JAK/STAT) intracellular signaling axis. This study aimed to investigate the role of JAK/STAT in the lipid perturbations induced by Th2 signaling in 3D epidermal equivalents. Tofacitinib, a low-molecular-mass JAK inhibitor, was used to screen for JAK/STAT-mediated deregulation of lipid metabolism. Th2 cytokines decreased the expression of elongases 1, 3, and 4 and serine-palmitoyl-transferase and increased that of sphingolipid delta(4)-desaturase and carbonic anhydrase 2. Th2 cytokines inhibited the synthesis of palmitoleic acid and caused depletion of triglycerides, in association with altered phosphatidylcholine profiles and fatty acid (FA) metabolism. Overall, the ceramide profiles were minimally affected. Except for most sphingolipids and very-long-chain FAs, the effects of Th2 on lipid pathways were reversed by co-treatment with tofacitinib. An increase in the mRNA levels of CPT1A and ACAT1, reduced by tofacitinib, suggests that Th2 cytokines promote FA beta-oxidation. In conclusion, pharmacological inhibition of JAK/STAT activation prevents the lipid disruption caused by the halted homeostasis of FA metabolism.


Cytokines , Janus Kinases , Lipid Metabolism , STAT Transcription Factors , Th2 Cells , Humans , Th2 Cells/metabolism , Th2 Cells/drug effects , STAT Transcription Factors/metabolism , Janus Kinases/metabolism , Cytokines/metabolism , Lipid Metabolism/drug effects , Epidermis/metabolism , Epidermis/drug effects , Signal Transduction/drug effects , Piperidines/pharmacology , Pyrimidines/pharmacology , Janus Kinase Inhibitors/pharmacology , Interleukin-4/metabolism , Fatty Acids/metabolism
4.
J Zhejiang Univ Sci B ; 25(5): 410-421, 2024 Mar 12.
Article En, Zh | MEDLINE | ID: mdl-38725340

Pheochromocytomas and paragangliomas (PPGLs) cause symptoms by altering the circulation levels of catecholamines and peptide hormones. Currently, the diagnosis of PPGLs relies on diagnostic imaging and the detection of catecholamines. In this study, we used ultra-performance liquid chromatography (UPLC)/quadrupole time-of-flight mass spectrometry (Q-TOF MS) analysis to identify and measure the perioperative differential metabolites in the plasma of adrenal pheochromocytoma patients. We identified differentially expressed genes by comparing the transcriptomic data of pheochromocytoma with the normal adrenal medulla. Through conducting two steps of metabolomics analysis, we identified 111 differential metabolites between the healthy group and the patient group, among which 53 metabolites were validated. By integrating the information of differential metabolites and differentially expressed genes, we inferred that the cysteine-methionine, pyrimidine, and tyrosine metabolism pathways were the three main metabolic pathways altered by the neoplasm. The analysis of transcription levels revealed that the tyrosine and cysteine-methionine metabolism pathways were downregulated in pheochromocytoma, whereas the pyrimidine pathway showed no significant difference. Finally, we developed an optimized diagnostic model of two metabolites, L-dihydroorotic acid and vanylglycol. Our results for these metabolites suggest that they may serve as potential clinical biomarkers and can be used to supplement and improve the diagnosis of pheochromocytoma.


Adrenal Gland Neoplasms , Cysteine , Methionine , Pheochromocytoma , Pyrimidines , Tyrosine , Pheochromocytoma/metabolism , Pheochromocytoma/blood , Humans , Adrenal Gland Neoplasms/metabolism , Adrenal Gland Neoplasms/blood , Pyrimidines/metabolism , Methionine/metabolism , Tyrosine/metabolism , Tyrosine/blood , Cysteine/metabolism , Male , Metabolomics/methods , Female , Middle Aged , Adult , Metabolic Networks and Pathways
5.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article En | MEDLINE | ID: mdl-38732030

Melanoma, the deadliest type of skin cancer, has a high propensity to metastasize to other organs, including the brain, lymph nodes, lungs, and bones. While progress has been made in managing melanoma with targeted and immune therapies, many patients do not benefit from these current treatment modalities. Tumor cell migration is the initial step for invasion and metastasis. A better understanding of the molecular mechanisms underlying metastasis is crucial for developing therapeutic strategies for metastatic diseases, including melanoma. The cell adhesion molecule L1CAM (CD171, in short L1) is upregulated in many human cancers, enhancing tumor cell migration. Earlier studies showed that the small-molecule antagonistic mimetics of L1 suppress glioblastoma cell migration in vitro. This study aims to evaluate if L1 mimetic antagonists can inhibit melanoma cell migration in vitro and in vivo. We showed that two antagonistic mimetics of L1, anagrelide and 2-hydroxy-5-fluoropyrimidine (2H5F), reduced melanoma cell migration in vitro. In in vivo allograft studies, only 2H5F-treated female mice showed a decrease in tumor volume.


Cell Movement , Melanoma , Neural Cell Adhesion Molecule L1 , Cell Movement/drug effects , Animals , Humans , Melanoma/drug therapy , Melanoma/metabolism , Melanoma/pathology , Mice , Neural Cell Adhesion Molecule L1/metabolism , Cell Line, Tumor , Female , Xenograft Model Antitumor Assays , Skin Neoplasms/pathology , Skin Neoplasms/drug therapy , Skin Neoplasms/metabolism , Pyrimidines/pharmacology
7.
BMJ Open Ophthalmol ; 9(1)2024 May 03.
Article En | MEDLINE | ID: mdl-38702178

BACKGROUND: Dry eye disease is the most commonplace multifractional ocular complication, which has already affected millions of people in the world. It is identified by the excessive buildup of reactive oxygen species, leading to substantial corneal epithelial cell demise and ocular surface inflammation attributed to TLR4. In this study, we aimed to identify potential compounds to treat of dry eye syndrome by exploring in silico methods. METHODS: In this research, molecular docking and dynamics simulation tests were used to examine the effects of selected compounds on TLR4 receptor. Compounds were extracted from different databases and were prepared and docked against TLR4 receptor via Autodock Vina. Celastrol, lumacaftor and nilotinib were selected for further molecular dynamics studies for a deeper understanding of molecular systems consisting of protein and ligands by using the Desmond module of the Schrodinger Suite. RESULTS: The docking results revealed that the compounds are having binding affinity in the range of -5.1 to -8.78 based on the binding affinity and three-dimensional interactions celastrol, lumacaftor and nilotinib were further studied for their activity by molecular dynamics. Among the three compounds, celastrol was the most stable based on molecular dynamics trajectory analysis from 100 ns in the catalytic pockets of 2Z63.pdb.pdb. Root mean square deviation of celastrol/2Z63 was in the range of 1.8-4.8 Å. CONCLUSION: In particular, Glu376 of TLR4 receptor is crucial for the identification and binding of lipopolysaccharides (LPS), which are part of Gram-negative bacteria's outer membrane. In our investigation, celastrol binds to Glu376, suggesting that celastrol may prevent the dry eye syndrome by inhibiting LPS's binding to TLR4.


Dry Eye Syndromes , Molecular Docking Simulation , Molecular Dynamics Simulation , Pentacyclic Triterpenes , Pyrimidines , Toll-Like Receptor 4 , Dry Eye Syndromes/drug therapy , Toll-Like Receptor 4/antagonists & inhibitors , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/chemistry , Humans , Pentacyclic Triterpenes/pharmacology , Pentacyclic Triterpenes/chemistry , Pentacyclic Triterpenes/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/chemistry , Pyrimidines/therapeutic use , Triterpenes/pharmacology , Triterpenes/chemistry , Computer Simulation , Ligands , Aminopyridines/pharmacology , Aminopyridines/chemistry , Aminopyridines/therapeutic use
8.
Chem Biol Drug Des ; 103(5): e14530, 2024 May.
Article En | MEDLINE | ID: mdl-38725091

Feline immunodeficiency virus (FIV) is a common infection found in domesticated and wild cats worldwide. Despite the wealth of therapeutic understanding of the disease in humans, considerably less information exists regarding the treatment of the disease in felines. Current treatment relies on drugs developed for the related human immunodeficiency virus (HIV) and includes compounds of the popular non-nucleotide reverse transcriptase (NNRTI) class. This is despite FIV-RT being only 67% similar to HIV-1 RT at the enzyme level, increasing to 88% for the allosteric pocket targeted by NNRTIs. The goal of this project was to try to quantify how well the more extensive pharmacological knowledge available for human disease translates to felines. To this end we screened known NNRTIs and 10 diverse pyrimidine analogs identified virtually. We use this chemo-centric probe approach to (a) assess the similarity between the two related RT targets based on the observed experimental inhibition values, (b) try to identify more potent inhibitors at FIV, and (c) gain a better appreciation of the structure-activity relationships (SAR). We found the correlation between IC50s at the two targets to be strong (r2 = 0.87) and identified compound 1 as the most potent inhibitor of FIV with IC50 of 0.030 µM ± 0.009. This compared to FIV IC50 values of 0.22 ± 0.17 µM, 0.040 ± 0.010 µM and >160 µM for known anti HIV-1 RT drugs Efavirenz, Rilpivirine, and Nevirapine, respectively. This knowledge, along with an understanding of the structural origin that give rise to any differences could improve the way HIV drugs are repurposed for FIV.


HIV Reverse Transcriptase , Immunodeficiency Virus, Feline , Reverse Transcriptase Inhibitors , Animals , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/chemistry , Cats , Immunodeficiency Virus, Feline/drug effects , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/metabolism , Humans , Structure-Activity Relationship , Pyrimidines/chemistry , Pyrimidines/pharmacology , Alkynes/chemistry , Alkynes/pharmacology , HIV-1/drug effects , HIV-1/enzymology , Cyclopropanes/pharmacology , Cyclopropanes/chemistry , Molecular Docking Simulation , Benzoxazines/chemistry , Benzoxazines/pharmacology
9.
Pak J Pharm Sci ; 37(1(Special)): 173-184, 2024 Jan.
Article En | MEDLINE | ID: mdl-38747267

Hydrazones 1-6, azo-pyrazoles 7-9 and azo-pyrimidines 10-15 are compounds that exhibit antibacterial activity. The mode of action and structures of these derivatives have been previously confirmed as antibacterial. In this investigation, biological screening and molecular docking studies were performed for derivatives 1-15, with compounds 2, 7, 8, 14 and 15 yielding the best energy scores (from -20.7986 to -10.5302 kcal/mol). Drug-likeness and in silico ADME prediction for the most potent derivatives, 2, 7, 8, 14 and 15, were predicted (from 84.46 to 96.85%). The latter compounds showed good recorded physicochemical properties and pharmacokinetics. Compound 8 demonstrated the strongest inhibition, which was similar to the positive control (eflornithine) against Trypanosoma brucei brucei (WT), with an EC50 of 25.12 and 22.52µM, respectively. Moreover, compound 14 exhibited the best activity against Leishmania mexicana promastigotes and Leishmania major promastigotes (EC50 =46.85; 40.78µM, respectively).


Molecular Docking Simulation , Pyrazoles , Pyrimidines , Trypanocidal Agents , Trypanosoma brucei brucei , Pyrimidines/pharmacology , Pyrimidines/chemistry , Pyrimidines/chemical synthesis , Trypanosoma brucei brucei/drug effects , Pyrazoles/pharmacology , Pyrazoles/chemistry , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/chemical synthesis , Leishmania mexicana/drug effects , Leishmania major/drug effects , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Computer Simulation , Azo Compounds/pharmacology , Azo Compounds/chemistry , Azo Compounds/chemical synthesis , Structure-Activity Relationship , Parasitic Sensitivity Tests
10.
J Am Chem Soc ; 146(19): 13317-13325, 2024 May 15.
Article En | MEDLINE | ID: mdl-38700457

We describe the synthesis and biological testing of ruthenium-bipyridine ruxolitinib (RuBiRuxo), a photoreleasable form of ruxolitinib, a JAK inhibitor used as an antitumoral agent in cutaneous T-cell lymphomas (CTCL). This novel caged compound is synthesized efficiently, is stable in aqueous solution at room temperature, and is photoreleased rapidly by visible light. Irradiation of RuBiRuxo reduces cell proliferation and induces apoptosis in a light- and time-dependent manner in a CTCL cell line. This effect is specific and is mediated by a decreased phosphorylation of STAT proteins. Our results demonstrate the potential of ruthenium-based photocompounds and light-based therapeutic approaches for the potential treatment of cutaneous lymphomas and other pathologies.


Antineoplastic Agents , Apoptosis , Cell Proliferation , Nitriles , Pyrazoles , Pyrimidines , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Nitriles/chemistry , Nitriles/pharmacology , Nitriles/chemical synthesis , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Apoptosis/drug effects , Pyrazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Cell Line, Tumor , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/chemistry , Janus Kinase Inhibitors/chemical synthesis , Ruthenium/chemistry , Ruthenium/pharmacology , Light , Molecular Structure , Janus Kinases/antagonists & inhibitors , Janus Kinases/metabolism
12.
Biotechnol J ; 19(5): e2300672, 2024 May.
Article En | MEDLINE | ID: mdl-38719621

The production of recombinant adeno-associated virus (rAAV) for gene therapy applications relies on the use of various host cell lines, with suspension-grown HEK293 cells being the preferred expression system due to their satisfactory rAAV yields in transient transfections. As the field of gene therapy continues to expand, there is a growing demand for efficient rAAV production, which has prompted efforts to optimize HEK293 cell line productivity through engineering. In contrast to other cell lines like CHO cells, the transcriptome of HEK293 cells during rAAV production has remained largely unexplored in terms of identifying molecular components that can enhance yields. In our previous research, we analyzed global regulatory pathways and mRNA expression patterns associated with increased rAAV production in HEK293 cells. Our data revealed substantial variations in the expression patterns between cell lines with low (LP) and high-production (HP) rates. Moving to a deeper layer for a more detailed analysis of inflammation-related transcriptome data, we detected an increased expression of interferon-related genes in low-producing cell lines. Following upon these results, we investigated the use of Ruxolitinib, an interferon pathway inhibitor, during the transient production of rAAV in HEK293 cells as potential media additive to boost rAAV titers. Indeed, we find a two-fold increase in rAAV titers compared to the control when the interferon pathways were inhibited. In essence, this work offers a rational design approach for optimization of HEK293 cell line productivity and potential engineering targets, ultimately paving the way for more cost-efficient and readily available gene therapies for patients.


Dependovirus , Interferons , Signal Transduction , Humans , HEK293 Cells , Dependovirus/genetics , Interferons/metabolism , Interferons/genetics , Nitriles/pharmacology , Pyrimidines/pharmacology , Transfection , Pyrazoles/pharmacology
13.
J Drugs Dermatol ; 23(5): 378-379, 2024 May 01.
Article En | MEDLINE | ID: mdl-38709705

Alopecia areata (AA) is a common autoimmune disorder. Although its pathogenesis is not fully understood, AA involves CD8 T cell-mediated destruction of the hair follicle. Several treatment options exist; however, there is minimal evidence in the pediatric population. Currently, there are no curative treatments for AA. The literature suggests that Janus kinase (JAK) inhibitors may be an effective treat-ment for AA, but evidence in pediatric patients is limited. Here, we report a case of severe pediatric AA treated with topical ruxolitinib, a JAK inhibitor. J Drugs Dermatol. 2024;23(5):378-379. doi:10.36849/JDD.7782.


Alopecia Areata , Janus Kinase Inhibitors , Nitriles , Pyrazoles , Pyrimidines , Humans , Alopecia Areata/drug therapy , Nitriles/administration & dosage , Pyrimidines/administration & dosage , Pyrazoles/administration & dosage , Janus Kinase Inhibitors/administration & dosage , Janus Kinase Inhibitors/therapeutic use , Child , Skin Cream/administration & dosage , Treatment Outcome , Male , Administration, Cutaneous , Female
14.
AAPS PharmSciTech ; 25(5): 97, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710894

Pancreatic ductal adenocarcinoma (PDAC) is one of the highly fatal types of cancer with high mortality/incidence. Considering the crucial role of vascular endothelial growth factor (VEGF) in PDAC progression, its inhibition can be a viable strategy for the treatment. Pazopanib, a second-generation VEGF inhibitor, is approved for the treatment of various oncological conditions. However, due to associated limitations like low oral bioavailability (14-39%), high inter/intra-subject variability, stability issues, etc., high doses (800 mg) are required, which further lead to non-specific toxicities and also contribute toward cancer resistance. Thus, to overcome these challenges, pazopanib-loaded PEGylated nanoliposomes were developed and evaluated against pancreatic cancer cell lines. The nanoliposomes were prepared by thin-film hydration method, followed by characterization and stability studies. This QbD-enabled process design successfully led to the development of a suitable pazopanib liposomal formulation with desirable properties. The % entrapment of PZP-loaded non-PEGylated and PEGylated nanoliposomes was found to be 75.2% and 84.9%, respectively, whereas their particle size was found to be 129.7 nm and 182.0 nm, respectively. The developed liposomal formulations exhibited a prolonged release and showed desirable physicochemical properties. Furthermore, these liposomal formulations were also assessed for in vitro cell lines, such as cell cytotoxicity assay and cell uptake. These studies confirm the effectiveness of developed liposomal formulations against pancreatic cancer cell lines. The outcomes of this work provide encouraging results and a way forward to thoroughly investigate its potential for PDAC treatment.


Carcinoma, Pancreatic Ductal , Indazoles , Liposomes , Nanoparticles , Pancreatic Neoplasms , Particle Size , Pyrimidines , Sulfonamides , Indazoles/administration & dosage , Indazoles/pharmacology , Humans , Sulfonamides/administration & dosage , Sulfonamides/pharmacology , Sulfonamides/chemistry , Pyrimidines/administration & dosage , Pyrimidines/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Cell Line, Tumor , Pancreatic Neoplasms/drug therapy , Carcinoma, Pancreatic Ductal/drug therapy , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Survival/drug effects , Drug Liberation , Chemistry, Pharmaceutical/methods
15.
Mol Cancer ; 23(1): 91, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715012

BACKGROUND: Recent evidence has demonstrated that abnormal expression and regulation of circular RNA (circRNAs) are involved in the occurrence and development of a variety of tumors. The aim of this study was to investigate the effects of circ_PPAPDC1A in Osimertinib resistance in NSCLC. METHODS: Human circRNAs microarray analysis was conducted to identify differentially expressed (DE) circRNAs in Osimertinib-acquired resistance tissues of NSCLC. The effect of circ_PPAPDC1A on cell proliferation, invasion, migration, and apoptosis was assessed in both in vitro and in vivo. Dual-luciferase reporter assay, RT-qPCR, Western-blot, and rescue assay were employed to confirm the interaction between circ_PPAPDC1A/miR-30a-3p/IGF1R axis. RESULTS: The results revealed that circ_PPAPDC1A was significantly upregulated in Osimertinib acquired resistance tissues of NSCLC. circ_PPAPDC1A reduced the sensitivity of PC9 and HCC827 cells to Osimertinib and promoted cell proliferation, invasion, migration, while inhibiting apoptosis in Osimertinib-resistant PC9/OR and HCC829/OR cells, both in vitro and in vivo. Silencing circ_PPAPDC1A partially reversed Osimertinib resistance. Additionally, circ_PPAPDC1A acted as a competing endogenous RNA (ceRNA) by targeting miR-30a-3p, and Insulin-like Growth Factor 1 Receptor (IGF1R) was identified as a functional gene for miR-30a-3p in NSCLC. Furthermore, the results confirmed that circ_PPAPDC1A/miR-30a-3p/IGF1R axis plays a role in activating the PI3K/AKT/mTOR signaling pathway in NSCLC with Osimertinib resistance. CONCLUSIONS: Therefore, for the first time we identified that circ_PPAPDC1A was significantly upregulated and exerts an oncogenic role in NSCLC with Osimertinib resistance by sponging miR-30a-3p to active IGF1R/PI3K/AKT/mTOR pathway. circ_PPAPDC1A may serve as a novel diagnostic biomarker and therapeutic target for NSCLC patients with Osimertinib resistance.


Acrylamides , Aniline Compounds , Carcinoma, Non-Small-Cell Lung , Cell Proliferation , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Lung Neoplasms , MicroRNAs , RNA, Circular , Receptor, IGF Type 1 , Signal Transduction , Humans , MicroRNAs/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Drug Resistance, Neoplasm/genetics , Acrylamides/pharmacology , RNA, Circular/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Aniline Compounds/pharmacology , Cell Line, Tumor , Animals , Mice , Apoptosis , Cell Movement/genetics , Xenograft Model Antitumor Assays , Male , Female , Indoles , Pyrimidines
16.
Ther Drug Monit ; 46(3): 321-331, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38723115

BACKGROUND: Pazopanib, an anti-angiogenic multitarget tyrosine kinase inhibitor, has been approved for the treatment of metastatic renal cell carcinoma and soft tissue sarcoma. However, its recommended dose does not always produce consistent outcomes, with some patients experiencing adverse effects or toxicity. This variability is due to differences in the systemic exposure to pazopanib. This review aimed to establish whether sufficient evidence exists for the routine or selective therapeutic drug monitoring of pazopanib in adult patients with approved indications. METHODS: A systematic search of the PubMed and Web of Science databases using search terms related to pazopanib and therapeutic drug monitoring yielded 186 and 275 articles, respectively. Ten articles associated with treatment outcomes or toxicity due to drug exposure were selected for review. RESULTS: The included studies were evaluated to determine the significance of the relationship between drug exposure/Ctrough and treatment outcomes and between drug exposure and toxicity. A relationship between exposure and treatment outcomes was observed in 5 studies, whereas the trend was nonsignificant in 4 studies. A relationship between exposure and toxicity was observed in 6 studies, whereas 2 studies did not find a significant relationship; significance was not reported in 3 studies. CONCLUSIONS: Sufficient evidence supports the therapeutic drug monitoring of pazopanib in adult patients to improve its efficacy and/or safety in the approved indications.


Angiogenesis Inhibitors , Carcinoma, Renal Cell , Drug Monitoring , Indazoles , Kidney Neoplasms , Pyrimidines , Sarcoma , Sulfonamides , Indazoles/therapeutic use , Humans , Sulfonamides/therapeutic use , Sulfonamides/pharmacokinetics , Pyrimidines/therapeutic use , Pyrimidines/pharmacokinetics , Drug Monitoring/methods , Carcinoma, Renal Cell/drug therapy , Sarcoma/drug therapy , Kidney Neoplasms/drug therapy , Angiogenesis Inhibitors/therapeutic use , Angiogenesis Inhibitors/pharmacokinetics
17.
Nat Commun ; 15(1): 3805, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714664

Genomic alterations that activate Fibroblast Growth Factor Receptor 2 (FGFR2) are common in intrahepatic cholangiocarcinoma (ICC) and confer sensitivity to FGFR inhibition. However, the depth and duration of response is often limited. Here, we conduct integrative transcriptomics, metabolomics, and phosphoproteomics analysis of patient-derived models to define pathways downstream of oncogenic FGFR2 signaling that fuel ICC growth and to uncover compensatory mechanisms associated with pathway inhibition. We find that FGFR2-mediated activation of Nuclear factor-κB (NF-κB) maintains a highly glycolytic phenotype. Conversely, FGFR inhibition blocks glucose uptake and glycolysis while inciting adaptive changes, including switching fuel source utilization favoring fatty acid oxidation and increasing mitochondrial fusion and autophagy. Accordingly, FGFR inhibitor efficacy is potentiated by combined mitochondrial targeting, an effect enhanced in xenograft models by intermittent fasting. Thus, we show that oncogenic FGFR2 signaling drives NF-κB-dependent glycolysis in ICC and that metabolic reprogramming in response to FGFR inhibition confers new targetable vulnerabilities.


Bile Duct Neoplasms , Cholangiocarcinoma , Glucose , Glycolysis , NF-kappa B , Receptor, Fibroblast Growth Factor, Type 2 , Signal Transduction , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/pathology , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Humans , NF-kappa B/metabolism , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/genetics , Animals , Glycolysis/drug effects , Glucose/metabolism , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/drug therapy , Mice , Cell Line, Tumor , Signal Transduction/drug effects , Xenograft Model Antitumor Assays , Mitochondria/metabolism , Mitochondria/drug effects , Pyrimidines/pharmacology , Autophagy/drug effects , Gene Expression Regulation, Neoplastic/drug effects
18.
Sci Rep ; 14(1): 10293, 2024 05 04.
Article En | MEDLINE | ID: mdl-38704412

In this study, a sensitive and selective fluorescent chemosensor was developed for the determination of pirimicarb pesticide by adopting the surface molecular imprinting approach. The magnetic molecularly imprinted polymer (MIP) nanocomposite was prepared using pirimicarb as the template molecule, CuFe2O4 nanoparticles, and graphene quantum dots as a fluorophore (MIP-CuFe2O4/GQDs). It was then characterized using X-ray diffraction (XRD) technique, Fourier transforms infrared (FT-IR) spectroscopy, scanning electron microscope (SEM), and transmission electron microscopy (TEM). The response surface methodology (RSM) was also employed to optimize and estimate the effective parameters of pirimicarb adsorption by this polymer. According to the experimental results, the average particle size and imprinting factor (IF) of this polymer are 53.61 nm and 2.48, respectively. Moreover, this polymer has an excellent ability to adsorb pirimicarb with a removal percentage of 99.92 at pH = 7.54, initial pirimicarb concentration = 10.17 mg/L, polymer dosage = 840 mg/L, and contact time = 6.15 min. The detection of pirimicarb was performed by fluorescence spectroscopy at a concentration range of 0-50 mg/L, and a sensitivity of 15.808 a.u/mg and a limit of detection of 1.79 mg/L were obtained. Real samples with RSD less than 2 were measured using this chemosensor. Besides, the proposed chemosensor demonstrated remarkable selectivity by checking some other insecticides with similar and different molecular structures to pirimicarb, such as diazinon, deltamethrin, and chlorpyrifos.


Pesticides , Pyrimidines , Pesticides/analysis , Carbamates/analysis , Carbamates/chemistry , Quantum Dots/chemistry , Molecularly Imprinted Polymers/chemistry , Polymers/chemistry , Spectrometry, Fluorescence/methods , Graphite/chemistry , Molecular Imprinting/methods , Adsorption , Limit of Detection , Spectroscopy, Fourier Transform Infrared , Nanocomposites/chemistry , Nanocomposites/ultrastructure
19.
Birth Defects Res ; 116(5): e2345, 2024 May.
Article En | MEDLINE | ID: mdl-38716582

BACKGROUND: Abrocitinib is a Janus kinase (JAK) 1 selective inhibitor approved for the treatment of atopic dermatitis. Female reproductive tissues were unaffected in general toxicity studies, but an initial female rat fertility study resulted in adverse effects at all doses evaluated. A second rat fertility study was conducted to evaluate lower doses and potential for recovery. METHODS: This second study had 4 groups of 20 females each administered abrocitinib (0, 3, 10, or 70 mg/kg/day) 2 weeks prior to cohabitation through gestation day (GD) 7. In addition, 2 groups of 20 rats (0 or 70 mg/kg/day) were dosed for 3 weeks followed by a 4-week recovery period before mating. All mated females were evaluated on GD 14. RESULTS: No effects were observed at ≤10 mg/kg/day. At 70 mg/kg/day (29x human exposure), decreased pregnancy rate, implantation sites, and viable embryos were observed. All these effects reversed 4 weeks after the last dose. CONCLUSIONS: Based on these data and literature on the potential role of JAK signaling in implantation, we hypothesize that these effects may be related to JAK1 inhibition and, generally, that peri-implantation effects such as these, in the absence of cycling or microscopic changes in nonpregnant female reproductive tissues, are anticipated to be reversible.


Fertility , Janus Kinase 1 , Pyrimidines , Sulfonamides , Female , Animals , Pregnancy , Rats , Fertility/drug effects , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/metabolism , Pyrimidines/pharmacology , Sulfonamides/pharmacology , Rats, Sprague-Dawley , Embryo Implantation/drug effects , Janus Kinase Inhibitors/pharmacology , Pregnancy Rate
20.
Zhonghua Xue Ye Xue Za Zhi ; 45(3): 215-224, 2024 Mar 14.
Article Zh | MEDLINE | ID: mdl-38716592

Objective: To retrospectively analyze the treatment status of tyrosine kinase inhibitors (TKI) in newly diagnosed patients with chronic myeloid leukemia (CML) in China. Methods: Data of chronic phase (CP) and accelerated phase (AP) CML patients diagnosed from January 2006 to December 2022 from 77 centers, ≥18 years old, and receiving initial imatinib, nilotinib, dasatinib or flumatinib-therapy within 6 months after diagnosis in China with complete data were retrospectively interrogated. The choice of initial TKI, current TKI medications, treatment switch and reasons, treatment responses and outcomes as well as the variables associated with them were analyzed. Results: 6 893 patients in CP (n=6 453, 93.6%) or AP (n=440, 6.4%) receiving initial imatinib (n=4 906, 71.2%), nilotinib (n=1 157, 16.8%), dasatinib (n=298, 4.3%) or flumatinib (n=532, 7.2%) -therapy. With the median follow-up of 43 (IQR 22-75) months, 1 581 (22.9%) patients switched TKI due to resistance (n=1 055, 15.3%), intolerance (n=248, 3.6%), pursuit of better efficacy (n=168, 2.4%), economic or other reasons (n=110, 1.6%). The frequency of switching TKI in AP patients was significantly-higher than that in CP patients (44.1% vs 21.5%, P<0.001), and more AP patients switched TKI due to resistance than CP patients (75.3% vs 66.1%, P=0.011). Multi-variable analyses showed that male, lower HGB concentration and ELTS intermediate/high-risk cohort were associated with lower cytogenetic and molecular responses rate and poor outcomes in CP patients; higher WBC count and initial the second-generation TKI treatment, the higher response rates; Ph(+) ACA at diagnosis, poor PFS. However, Sokal intermediate/high-risk cohort was only significantly-associated with lower CCyR and MMR rates and the poor PFS. Lower HGB concentration and larger spleen size were significantly-associated with the lower cytogenetic and molecular response rates in AP patients; initial the second-generation TKI treatment, the higher treatment response rates; lower PLT count, higher blasts and Ph(+) ACA, poorer TFS; Ph(+) ACA, poorer OS. Conclusion: At present, the vast majority of newly-diagnosed CML-CP or AP patients could benefit from TKI treatment in the long term with the good treatment responses and survival outcomes.


Dasatinib , Imatinib Mesylate , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Protein Kinase Inhibitors , Humans , Retrospective Studies , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis , Protein Kinase Inhibitors/therapeutic use , Imatinib Mesylate/therapeutic use , Dasatinib/therapeutic use , China , Treatment Outcome , Male , Female , Pyrimidines/therapeutic use , Adult , Middle Aged
...